Name:

Section:

Math 182, Practice Test 1. Spring 2020.
Show all work for full credit. Use reduced fractions instead of decimals unless otherwise mentioned.
(1) Compute the indefinite integral.

$$
\int x^{5} \cos \left(x^{6}\right) d x
$$

(2) Compute the definite integral.

$$
\int_{1}^{e} \frac{\sqrt{\ln (x)}}{x} d x
$$

(3) Find the area of the region bound between the curves $f(x)=x^{2}$ and $g(x)=\sqrt{x}$. (Hint, use the "washer" methed and $d x$.)
(4) Find the volume obtained by rotating the region from problem (3) around the x-axis. (Hint:)
(5) Find the volume obtained by rotating the region bounded by $y=\frac{1}{1+x^{2}}, x=0, x=1$, and the x-axis about the y-axis. (Hint: use the "shell" method and $d x$.)
(6) Find the volume obtained by rotation the region bounded by $y=e^{x}, y=1$, and $x=1$ around the vertical line $x=-1$. (Hint: Use the shell method and $d x$.)
(7) Compute the improper integral using a limit. Does it converge or diverge? If it converges, what does it converge to?

$$
\int_{2}^{\infty} \frac{1}{x^{3}} d x
$$

(8) Compute the improper integral using a limit. Does it converge or diverge? If it converges, what does it converge to?

$$
\int_{0}^{8} \frac{1}{\sqrt[3]{x}} d x
$$

(9) Compute the improper integral using a limit. Does it converge or diverge? If it converges, what does it converge to?

$$
\int_{1}^{\infty} \frac{1}{\sqrt[3]{x}} d x
$$

Solutions

1. $\frac{1}{6} \sin \left(x^{6}\right)+c$
2. $\frac{2}{3}$ (Note: I used the facts that $\ln (e)=1$ and $\ln (1)=0$, these will be helpful for the test.)
3. $\frac{1}{3}$
4. $\frac{3 \pi}{10}$
5. $\pi \ln (2)$
6. $4 \pi-\frac{3 \pi}{2}+2 \pi \ln \left(\frac{1}{2}\right)$ (Note: If a problem like this is on the test, it will be extra credit.)
7. Converges to $\frac{1}{8}$
8. Converges to 6
9. Diverges (Note: you can either use the limit to show that this diverges, or simply note that this diverges by the " p-test" with $p=\frac{1}{3}$, which would earn full credit on the test.)
